

Montana Hydrology Workshop

Helena, Montana July 27-29, 2010

MONTANA PRECIPITATION MAP

Sponsored by

Montana Department of Environmental Quality
Water Quality Bureau, Helena

Phil Farnes, Snowcap Hydrology
John Huddleston, Geophysical Computing Solutions
Kyle Flynn, Montana DEQ

HISTORY

- April 1 SWE More Than Annual Precipitation
- Runoff Equal to Annual Precipitation
- First Mountain Map by Farnes
- Mountains First 15 Year Average 1960's
- Valleys Added 30 Year Average Early 1970's
- Updated Early 1990's
- > 30 Year Averages Updated every 10 Years
- > PRISM
- > Anuspline
- > Mt Clim

MOUNTAINS

- > SNOTEL STATIONS
- > STORAGE GAGES (NRCS AND NWS)
- > SNOW COURSES
 - Correlations Developed for Drainages Using Annual vs April 1 SWE at SNOTEL Sites
 - R² Typically Above 0.9
 - Annual Precipitation Estimated From April 1 SWE

SYNTHETIC POINTS

Valleys

- > NWS Climatological Stations
- Estimate Average for Discontinued Stations by Correlating with Active Stations
- Estimate Average for Stations With Less Than 30 Years in Base Period
- Also Data Collected By Other Agencies and Individuals

TOTAL MONTANA STATIONS

- > 433 NWS Climatological Stations
- > 150 NRCS SNOTEL Stations and Storage Gages
- > 196 NRCS Snow Courses
- > 54 NWS Storage and Hourly Gages
- > 170 Synthetic Points
- > 89 Idaho Snow Stations
- > 122 Wyoming Stations
- > 72 Canadian Station
- > 14 North and South Dakota Stations

LOCATIONS

DISTRIBUTION

GIS METHODS

- > Inverse Distance Weighted
 - No weight consideration of elevation
 - Varying power, grid size, and neighborhood
- > Multivariate Inverse Distance Weighted
 - Weighted with precipitation
 - Weighted with quadratic precipitation
 - Weighted with linear function of elevation
 - Weighted with linear function of elevation considering east and west Montana
 - Weighted with quadratic elevation

GIS METHODS

- > Ordinary Kriging
 - Kriging without considering elevation
- > Universal Kriging with Trend
 - Kriging with X and Y
 - Kriging with elevation
 - Kriging with precipitation = linear elevation
 - Kriging with precipitation = quadratic elevation

GIS METHODS

> Regression

Montana with Synthetic

- P = -1.62232 + 0.01810E, $R^2 = .34$, N = 1301
- P = -2.65568 + 0.01900E, R^2 = .30, N=1068 (western)
- P = 8.25693 + 0.006412E, R² = .61, N=233 (eastern)
- log(P) = 1.40733 + 0.6774 log(E) R^2 = 0.2195
- log(P) = 3.09794 + 0.4082 log(E) R^2 = 0.3880
- log(P) = 1.17419 + 0.7051 log(E) R^2 = 0.3256

Montana without Synthetic

- P = 6.14179 + 0.01188E, R^2 = .24, N=1130
- P = 8.10590 + 0.01127E, R² = .16, N=909 (western)
- P = 8.27897 + 0.00626E, R^2 = .60, N=221 (eastern)

SCALE

- Montana state plane
- > NED Elevation Grid 30m
- MAP analysis variable

```
+ ----- 3,4

- - -

1,2 ----+
```

- User specifies corner (X,Y) locations
- User specifies grid size (meters)
- User specifies parameter coefficients
- User specifies neighborhood (# cells)

Meagher County

Precipitation Station Locations

71-00 Avg

Multivariate IDW

Linear

vs Farnes

hand drawn 71-00

Linear
Regression
vs Farnes
hand drawn 71-00

PRISM vs Farnes hand drawn 71-00

FUTURE

- Monthly and Seasonal Precipitation
- Monthly, Seasonal, and Annual Temperatures
- Growing Degree-Days
- Day Plants Break Dormancy
- Growing Season
- Ground Snow Loads (MSU)

QUESTIONS?